

ALERT-2 Protocol Development Project

Timothy J. Salo
Salo IT Solutions, Inc.
salo <at> salo <at> com

ALERT-2

Topics

ALERT-2 Phase I Project

 Media Access Control (MAC) Protocol Analysis

ALERT-2 Phase II Proposal

ALERT-2 Phase I Project

Overview

- Six-month project funded by NOAA
- Preliminary work on ALERT-2 protocols
 - Almost everything from the modem to the sensor/data logger/database
- July 2007 January 2008

Results

- ALERT-2 Requirements Specification
- Preliminary ALERT-2 Protocol Specification
- ALERT-2 project Web site
 - http://www.alert-2.com/

Focus

- Larger than-expected focus on:
 - Ensuring that correct problem is being solved (the right requirements)
 - Eliciting requirements from ALERT community
 - Evangelizing technology
 - I am a computer scientist, not a hydrologist!

Requirements Elicitation

- "ALERT into the Future" (SAAS 2006)
- 2006 SAAS Conference
- 2007 NHWC Conference
- Proceedings from other SAAS, NHWC, and AUG conferences
- FloodSystems Archives
- Meetings, phone calls, e-mails, and conversations

ALERT-2 Working Meetings

- Sacramento, CA
 - October 24, 2007
- Longmont, CO
 - January 10, 2008
- Sacramento, CA
 - April 17, 2008

- Summarized user (less technical) ALERT-2 requirements
- Document available:
 - http://www.alert-2.com/
- I would love to hear any questions, comments you have!

- Continue to support real-time, best-effort sensor data
 - (Do what original ALERT protocol does)
- Improve performance
 - Blue Water Design's ALERT-2 modem is a big step forward
 - But, collisions, packet loss won't go away

- Improve functionality
 - Larger networks
 - More sensors
 - More sensor types
 - More data
 - ...
- Provide extensibility
 - Enable protocol to evolve

- Operators should be able to manage their networks remotely
 - Poll remote stations for status, data
 - Command actuators at remote stations
 - Download log files over network
 - Upload new configurations (e.g., to repeaters)
 - "That would be awesome"

- ALERT-2 should provide:
 - Best-effort, datagram service
 - Just like original ALERT protocol, only better
 - Optional reliable datagram service
 - Ensure that a single packet is really received
 - Useful for commands, ...
 - Optional reliable byte stream service
 - Reliably transfer files
 - Log files, configuration files, ...

- Optional, reliable services require two-way communications!
 - "This isn't the way we have been doing things"

Preliminary Protocol Specification

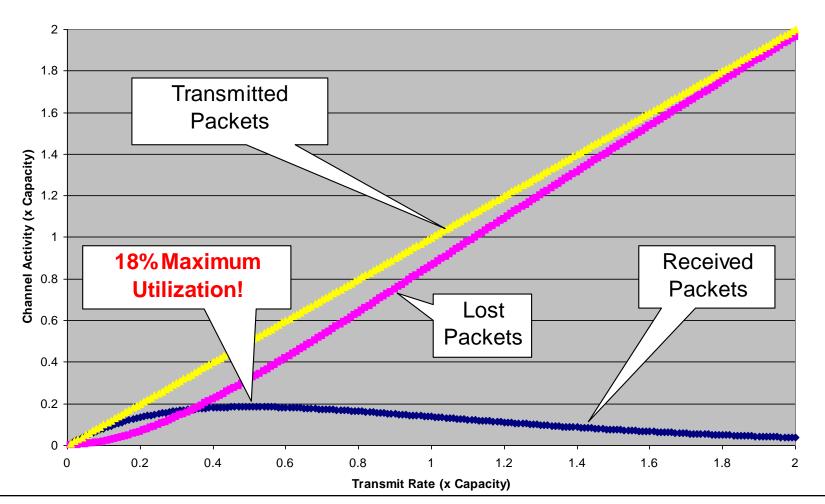
- A preliminary set of protocols was described
 - Link, network, transport protocols
- Document available on project Web site:
 - http://www.alert-2.com/
- But, collisions (packet loss) won't go away without a good "media access control" (MAC) protocol

Media Access Control (MAC) Protocol Analysis

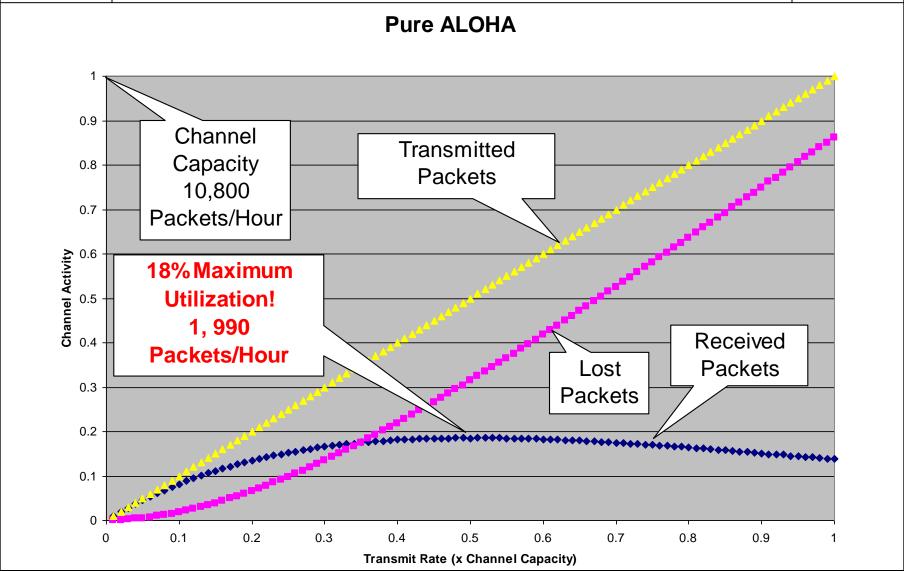
Media Access Control (MAC) Protocols

- Controls which station can transmit when
- Original ALERT protocol uses Pure ALOHA protocol
 - Stations transmit whenever they want
- Some ALERT systems use Carrier Sense / Multiple Access (CSMA) protocol
 - Stations listen for clear channel before transmitting

Approach


Constructed discrete event simulation software

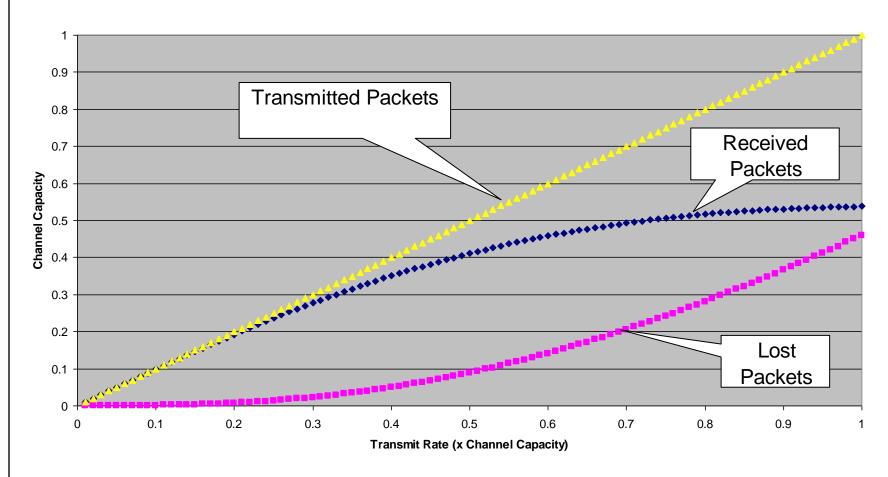
 Evaluating MAC protocols, station characteristics



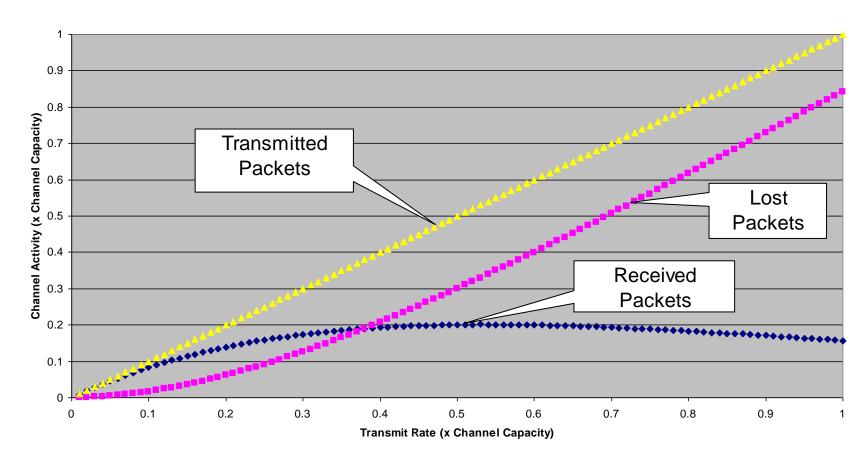
Salo IT Solutions, Inc.

AUG – May 8, 2008

Pure ALOHA Protocol


- Maximum channel utilization of 18%
 - But, 63% packet loss
- Results independent of:
 - Packet size
 - Bytes or time
 - Number of nodes
 - Transmission speed

- ...


Perfect Carrier Sense/Multiple Access (CSMA) (Listen before transmitting)

Carrier Sense / Multiple Access

- Highly beneficial in theory
- Hard to make work in the real world
 - Stations don't hear all other stations
 - The hidden terminal problem
 - Receive/Transmit Turnaround time
 - Differences between voice-grade radios and datagrade radios
 - ...
 - Note: These results are preliminary

Time-Slotted MAC Protocols

- "A time-slotted MAC protocol could be a big win"
- Assign each station a time slot in which they must transmit
 - Multiple stations could have the same time slot

Hybrid MAC Protocols

- Hybrid time-slotted/ALOHA protocol:
 - Time-slotted access to avoid collisions
 - ALOHA protocol to minimize latency

Benefits

- A good MAC protocol can:
 - Control or eliminate collisions
 - Allocate bandwidth:
 - To different users
 - To different uses
 - Protect real-time sensor data from other activity

ALERT-2 Phase II Proposal

Proposal Status

- Proposal submitted March 3
- Oral presentation May 14
- Approximate start date (if awarded)
 August 1, 2008

Objectives

- Develop ALERT-2 Computer Module (ACM)
- Implement ALERT-2 protocols
- Field trial ALERT-2 software, ACM
- Update ALERT-2 protocol spec
- Standardize ALERT-2 protocols

ALERT-2 Computer Module (ACM)

- Commercial, off-the-shelf hardware
 - No hardware development!
- Small, energy-efficient single-board computer (SBC)
- Linux
- Intended to enable early field trials
- Future as a product unclear

ALERT-2 Protocols

- Based on Phase I work
- Include
 - MAC protocol (under development)
 - Link protocol
 - Network protocol
 - Transport protocols
 - Some application protocols

ALERT-2 Protocols

 Support both transmit-only and receive capable nodes and networks

ALERT-2 Protocols

- Provide
 - One-way best-effort datagram service
 - Equivalent to original ALERT service
 - Roughly analogous to UDP
 - Reliable datagram service
 - Roughly analogous to Reliable UDP
 - Reliable byte-stream service
 - Roughly analogous to TCP

ALERT-2 Protocols

- Application protocols
 - Hydrologic sensor data
 - Backbone multiplexing
 - Basic file transfer
 - Basic network monitoring/management

ALERT-2 Applications

- Backbone concentration
- Hydrologic sensor data collection
- Hydrologic sensor data archiving
- Basic network monitoring and management
- Basic file transport
- Network monitor