

ALERT-2 Working Meeting

October 24, 2007 Sacramento, CA

Timothy J. Salo Salo IT Solutions, Inc. salo@saloits.com

Salo IT Solutions, Inc.

Proposed Agenda

ALERT-2 Phase I SBIR Project

- Tim Salo

- ALERT-2 Requirements Specification
 Tim Salo
- ALERT-2 Modem Productization Plans
- ALERT-2 Technologies Discussion

- Tim Salo

ALERT-2 Phase II SBIR Objectives
 Tim Salo

Salo IT Solutions, Inc.

October 24, 2007 Sacramento, CA

Timothy J. Salo Salo IT Solutions, Inc. salo@saloits.com

Salo IT Solutions, Inc.

NOAA

NOAA Phase I SBIR Project

- Overall Objectives
 - Develop a next-generation suite of wireless communication protocols for automated flood warning systems
 - Freely available (open, non-proprietary) protocol specification
 - Implementation
- Phase I Duration:
 - July 16, 2007 January 15, 2008

NOAA Phase I SBIR Project

- Phase I Deliverables
 - Online Tools (<u>http://www.alert-2.com/</u>)
 - ALERT-2 mail lists
 - ALERT-2 document repository
 - ALERT-2 Requirements Specification
 - Initial version distributed, available online
 - A few comments received, mostly minor
 - Soliciting comments via phone
 - Topic for today

NOAA Phase I SBIR Project

- Phase I Deliverables (cont)
 - Draft ALERT-2 Protocol Specification
 - Topic for today
- Phase II Plans
 - Intend to submit Phase II SBIR proposal
 - Implement ALERT-2 Protocols
 - Deploy in field trials
 - Topic for today

ALERT-2 Working Meeting ALERT-2 Requirements

October 24, 2007 Sacramento, CA

Timothy J. Salo Salo IT Solutions, Inc. salo@saloits.com

Salo IT Solutions, Inc.

- Draft version 0.1: August 25, 2007
 - Distributed in early September
 - Dozens of downloads
 - A few, minor comments
- Does this document represent a consensus of the ALERT community?
- Suggest a point-by-point review of Section 3

ALERT-2 Working Meeting

NOAA

- 3.1 Equipment
 - Support bidirectional communication
 - Not require remote nodes to receive

- 3.2 Performance
 - Provide enhanced throughput
 - TBD messages per hour
 - Bluewater Design modem provides this
 - Ensure better channel utilization
 - TBD per cent utilization
 - Time slotted protocol would be nice (required)
 - Support larger networks
 - 1024 nodes

- 3.2 Performance (cont)
 - Support more sensors per node
 - Pretty much unlimited
 - Support more networks per channel
 - 15 networks per share a single RF channel
 - Ensure minimum latency
 - Report latency of less than TBD

- 3.3 Reliability
 - Reduce or eliminate packet loss due to congestion
 - Bluewater Design modem will help somewhat
 - Time-slotted MAC protocol probably required
 - Detect and discard packets that contain transmission errors.
 - Bluewater Design modem will provide this

- 3.3 Reliability (cont)
 - Minimize the number of packets that are lost as a result of congestion or transmission errors
 - Bluewater Design modem will help
 - Time-slotted MAC protocol may be required
 - Link-layer retransmission may be required

- 3.4 Naming and Addressing
 - Ensure that every ALERT-2 *node* is assigned a permanent, globally unique identifier
 - e.g., 48-bit IEEE MAC address
 - Use in databases (?)
 - Permit every ALERT-2 *node* to be configured with a text identifier
 - Software, other nodes should be able to read this
 - Use in databases (?)

- 3.4 Naming and Addressing (cont)
 - Use a short address for most purposes
 - e.g., 16-bit address to save bandwidth and energy
 - Address of node might change
 - e.g., don't use in database

- 3.5 Application Services
 - Support multiple applications per node
 - e.g., network management application; stream guage application, ...
 - Permit a specific application to be addressed
 - Support multiple application protocols
 - Different applications may use different protocols

- 3.5 Application Services (cont)
 - Provide an unreliable datagram service
 - Hope single packet gets to destination
 - Equivalent to current ALERT protocol
 - Provide a reliable datagram service
 - Make sure single packet gets to destination
 - Provide a reliable transport service
 - Make sure lots of data get to destination

- 3.6 Application Protocols
 - Each application should have its own protocols specified

- 3.7 Interoperability and Compatibility
 - Ensure interoperability between implementations and vendors
 - Products that conform to the ALERT-2 specification should be assured of interoperating with each other
 - Share an RF channel with the original ALERT protocol
 - Significant ALERT-2 functionality may not be available in mixed ALERT/ALERT-2 networks

- 3.7 Interoperability and Compatibility (cont)
 - Support existing transmitters and transceivers
 - Bluewater Design modem designed to do this

- 3.8 Extensibility
 - Permit new versions of the ALERT-2 protocol to be deployed incrementally
 - Permit new applications and new application protocols to be deployed without changes to the underlying ALERT-2 protocols
 - Permit application protocol to change without affecting other applications

- 3.9 Network Administration, Management
 - Support remote network management
 - Permit passive base stations
 - Support automatic base station fail-over
 - Minimize manual configuration
 - Configure routers and routing automatically.

- 3.10 Energy Conservation
 - Permit remote nodes to sleep
 - Important, but may be hard to do well
 - Operate with limited computational power and storage capacity in remote nodes

ALERT-2 Requirements

- 3.11 Security
 - Optionally ensure the integrity of data
 - Optionally prevent disclosure of data
 - Optionally ensure that the source of data is identified
 - Optionally ensure that data packets cannot be replayed
 - Optionally authenticate users or applications
 - Optionally authorize operations

Salo IT Solutions, Inc.

- 3.12 Intellectual Property
 - Make protocol specifications freely available
 - Permit implementation without paying fees

ALERT-2 Working Meeting Technologies Discussion

October 24, 2007 Sacramento, CA

Timothy J. Salo Salo IT Solutions, Inc. salo@saloits.com

Salo IT Solutions, Inc.

- Detailed discussion about potential technologies may be useful
 - Select (self-selected) audience?
 - Move later in day?

ALERT-2 Working Meeting

NOAA

- Terminology
 - Node
 - Informally, something with an antenna
 - Smart Node (SN)
 - A node with few power constraints
 - e.g., base station
 - Dumb Node (DN)
 - A node with (severe) power constraints
 - e.g., remote station

- Addressing
 - Assign 16-bit addresses to every node
 - Only one type of address
 - Use for MAC, link, network protocols
 - Configure addresses statically (manually)
 - Optionally, divide into:
 - Network (4 bits)
 - Address within network (12 bits)
 - Future: configure addresses automatically

- Applications
 - Each node may contain many application
 - Each application has a standard address within the node
 - e.g., 8 bit application address
 - Analogous to Internet port numbers
 - Probably associated with network-layer protocol, not transport-layer protocol

- Routing
 - Dumb nodes know how to get to a smart node
 - Smart nodes understand topology of network
 - Manually configured
 - Future: automatic, dynamic configuration of routing
 - i.e., a routing protocol

- Protocol Layers
 - Physical Layer
 - Media Access Control Layer
 - Link Layer
 - Transport Layer
 - Application Layer

- Physical Layer
 - Bluewater Design modem
 - ALERT-2 should probably work with other physical-layer protocols (modems)

- Media Access Control (MAC) Protocol
 - Responsible for determining which station can transmit when
 - A time-slotted protocol could be a really big win
 - Eliminate congestion
 - Enhance utilization (versus 18% for Aloha)
 - Time slot of one second or less
 - Maximum latency of small number of minutes or less
 - Smart Node (e.g., base station) controls timing

- Media Access Control (MAC) Protocol
 - Should support sleeping nodes
 - Smart node hold packets until dumb node wake up
 - Future: dynamic allocation of time slots
 - Future: mixed time-slotted, contention protocol
 - Lots of examples
 - e.g., IEEE 802.15.4 (used by ZigBee), 802.11 (Wi-Fi)
 - This is beyond the scope of my funding...

- Link Layer Protocol
 - Responsible for transmission between nodes
 - Retransmitting lost packets can be highly beneficial
 - Should provide both reliable and unreliable link-layer service
 - Lots of examples to work from
 - HDLC/SDLC/ADCCP/...

- Link Layer Protocol
 - Packet likely to include:
 - [Link] source address
 - [Link] destination address
 - Control
 - Sequence number / packet identifier
 - Acknowledgement
 - Etc.
 - Header probably transported in Bluewater Design header

- Network Layer Protocol
 - Responsible for end-to-end delivery of packets
 - Handles forwarding through repeaters routers
 - Packet likely to include:
 - [Network] source address (16 bits)
 - Source port address (8 bits)
 - [Network] destination address (16 bits)
 - Destination port address (8 bits)
 - Control

- Network Layer Protocol
 - Vaguely analogous to a stripped-down IP
 - Will assume that smart nodes know how to route, dumb nodes don't
 - Smart nodes will maintain routing tables
 - How complete?
 - Dynamic routing protocol is topic for further investigation...

- Transport Layer Protocol
 - Responsible for end-to-end (application-toapplication) delivery of data
 - Provide unreliable datagram service
 - Analogous to UDP
 - Provide reliable datagram service
 - Analogous to "reliable UDP"

- Transport Layer Protocol
 - Provide reliable byte-stream service
 - Analogous to [stripped-down] TCP
 - Short end-to-end delays (small sequence number space)
 - Avoid packetization/fragmentation issues
 - Push congestion control to MAC layer
 - Packet format
 - Thinking about this

- Application Layer Protocols
 - Every application can have its own protocols
 - Probably datagram and reliable byte-stream protocols are independent
 - Application protocols can evolve independently

- I can help you design and specify these
 - I don't have the domain expertise

ALERT-2 Working Meeting

NOAA

Technologies Discussion

• What am I missing?

ALERT-2 Working Meeting Phase II Plans

October 24, 2007 Sacramento, CA

Timothy J. Salo Salo IT Solutions, Inc. salo@saloits.com

Phase II Plans

- Intend to submit Phase II proposal
 - Due mid-March 2008
 - If funded, start August 2008
- Likely contents
 - Implement ALERT-2 protocols
 - Deploy in field tests
- I will need your support